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The formulation of an implicit code is described. The code solves the three-dimensional 
field equations without linearization. This code is applied to the study of beam tracking. Some 
applications are suggested. 

I. INTRODUCTION 

Computational models that are linearized about an axisymmetric equilibrium have 
proven invaluable in the study of instabilities of propagating beams. For example, 
linearized (monopole/dipole) particle simulation codes [ 1 ] as well as linearized codes 
with simplified models of beam dynamics [2] have been used for hose instability 
analysis. However, there are other areas of beam propagation phenomenology in 
which large departure from axisymmetry is essential and inevitable, and in which 
such linearized models can be quite misleading. For example, in the presence of 
transverse external magnetic or electric fields, different “slices” of the beam (defined 
by the distance 4 from the beam head) may be subject to different accelerations 
F/(my), where F is the force and y, which may be a function of 5, is the relativistic 
factor. In such situations, the beam may tear apart, or alternatively it may reach a 
non-axisymmetric equilibrium in which its cohesive self-forces counterbalance the 
sheared external forces. As another example, we have recently shown that there are 
important situations in which the beam head is in a grossly unstable equilibrium 
(unstable to simple zero-frequency transverse displacements) when it is propagating 
on-axis in a density or conductivity channel, but in which another and more stable 
equilibrium exists with the beam head off-axis by a prescribed amount. Thus axisym- 
metry is broken and the beam tends to track the channel by riding down the channel 
walls, rather than the channel center. Moreover, the equilibrium displacement from 
the channel axis increases from the head of the beam to its tail, increasing the 
departure from axisymmetry. 

To treat problems such as these, it is necessary to develop a fully three-dimensional 
solution of the electromagnetic field equations; monopole/dipole approximations will 
not do. In dealing with very highly relativistic paraxial beams we shall assume, 
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however, that it is suflicient to solve the three-dimensional form of Lee’s reduced field 
equations [3], rather then the complete Maxwell equations. This paper deals mainly 
with the numerical methods which we have developed to solve the field equations. To 
date, we have only addressed the problem of determining non-axisymmetric beam 
equilibria, in which the beam is specified by a prescribed density profile 
n,,(r - Y(C), C) [4]. Each slice of the beam is allowed transverse (noninfinitesimal) 
displacement Y(c), but is not allowed to distort. No particle dynamics and no time 
dependences have been studied to date. Eventually we shall have to study the stability 
of these equilibria to internal distortions and to dynamic modes such as hose, but this 
can only be done after the correct equilibria have been determined, a task which is by 
no means trivial either computationally, mathematically or physically. 

The code we have developed solves the full set of Lee field equations without 
linearization. The radial dependence is solved by finite difference with nonuniform 
grids. The theta dependence is solved by fast Fourier transform. The advantage of 
this method is that the theta derivatives are more than second-order accurate [ 5 1. An 
explicit scheme will not do because of severe time step limitation. This can be seen 
from the following: the Lee field equations are 

where v = u-‘. Both r and (5 behave like diffusion coefficients in the equations. Near 
the head of the beam, the resistivity q is very large, but near the tail, the ‘conductivity 
r~ is very large. The difference can easily be three orders of magnitude. So any explicit 
scheme that takes care of the solution at one end will have severe time step 
limitations at the other end. 

This code involves the solution of a bi-tridiagonal system with complex matrix 
coefficients. The complexity in calculation is offset by the fact that for the first time 
one is able to find the self-consistent fields and the force acting on the beam from 
head to tail for arbitrary beam displacement. 

We will not present the physics results investigated here; they will be reported in 
later publications. Instead, we shall concentrate on the numerical formulation of the 
code. In Section II, we review briefly the convolution sum, and in Section III we 
apply it to a simple diffusion equation. In Section IV, the method of solving the field 
equations is described. In Section V, we discuss some applications. In Appendix A, 
we describe one way of inverting a bi-tridiagonal system with complex matrix coef- 
ficients. In Appendix B, we describe some experience in running a code of this type. 
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II. REVIEW OF CONVOLUTION CODING 

Let A(0) and B(0) be two functions that depend on 8. The expansion of the product 
of A and B in a finite Fourier series is 

A(f?)B(B) = ‘f Ale-“’ i B,e-‘“’ 
1=-N i?l-N 

N N 

= c x A,Bme-i(l+m)e 
/=-N ,,,-h; 

(1) 

Let n = 1+ m, then (1) becomes 

m+N 

AB= f c An-,,,BmepinS. 
m=-N n=m-N 

(2) 

We want to convert (2) to a form like cz= -N( ) eCin8. Breaking the double sum to 
two sums and interchanging the direction of integration, we obtain 

iA , n-mB,eCi”e, (3) 

Equation (3) can be approximated by dropping the higher-order modes, i.e., we 
replace CiE PZN by Cz= -N. This can be justified, provided that the magnitude of a 
transform goes down rapidly with higher mode number. Equation (3) becomes 

III. IMPLICIT FORMULATION c )F A DIFFUSION EQUATION 

(4) 

BY THE TRANSFORM METHOD 

The RHS of a diffusion equation 

with L z V:, can be expressed as 

(5) 

(6) 



A NONLINEAR IMPLICIT REB CODE 331 

In matrix form, (6) becomes (dropping eei”‘) 

A typical (LA), term can be expanded to 

(LA),= (J-;rg-$j A,(r). (8) 

Using a nonuniform grid in radial direction, i.e., using uniform spacing in y, where 

y2 = r, 

2y dy = dr, 

we can rewrite (8) as 

In finite different form, (9) is 

where 

ai=.vi+ ,,,l(4YP2), 

Dim=- (&+$). I _ I 

Yi = 

Yi- I/2 

4wv;A2 ’ 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Substitute (10) in (7), and we obtain for the first row 
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‘lOCaiAi+ I.-N +Pi,-NAi,-N + YiAi-1,-N) 

+ Kl(aiAi+t.-N+l +Pi,-,S+LAi.-N+I + YiAi-l,-N+l) + “’ 

+ V-NCQiAi+l.O + Pi,OAi,O + YiAi- I,O) 

i+l 

(15) 

Similarly we can rewrite all the rows in (7) in a form such as (15). Consequently, the 
RHS of (5) can be expressed as 

-- -- -- 
RiAi+, +SiAi+ TiAi~,, (16) 

where 2. ,+ , , Ai, Ai-, are column matrices with the first element equal to A -,,, and the 
last element equal to A,v, and Ri, gi, Ti are banded matrices with 

fji z.7 

Ri = iiiqi, 

si = f&pi, 

Ti = yiqi, 

‘lo v-1 ... V-N 

Vl To r-1 **. 0 

r2 YIl ‘lo .*. 

5 

I 

(17) 

(18) 

(19) 



A NONLINEAR IMPLICIT REB CODE 333 

and L-xi and jri are diagonal matrices with their elements equal to cxi and yi, respec- 
tively. pi is also a diagonal matrix, but each element is different, i.e., Pi. -,\ 0 \ \ \ pi = I I. ‘\ Pi,, 

\ \ \ \ 
0 ‘Bi.1 

(20) 

Going back to (5), we finally obtain 

The scheme described in (21) is similar to a Crank-Nicholson method and is O(S)’ 
and O(d)*. Now we are ready to tackle the Lee field equations. as discussed in the 
next section. 

IV. IMPLICIT FORMULATION OF THE LEE FIELD 
EQUATIONS BY FOURIER TRANSFORM 

We can cast Lee’s field equations 13 ] into the form 

- = @:(A + 4) + qJ,,, 
ac 

e 

VZ_ $ = (Vu) . (V@) + aVl@, (24) 

where q s u-‘. Our aim here is to reduce (23) and (24) to a bi-tridiagonal system. 
The conductivity equation in normalized unit is 

au 
-=KK,J,+viu-K2Pa2, 
ai 

where 
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K, = 1.4653, 

K, = 1.7 x 10-5, 

APS3 
vi = 

1 +BS+CS2+DS3’ 

S = E2/P2, 

A = 1.423 x 10-4, 

B = 9.179 x 10P6, 

C = 2.656 x lo-“, 

D = 2.820 x 10-l’. 

E and P are the local electric field and pressure, respectively. The equation for u or q 
is not solved implicitly because it includes nonlinear terms due to avalanche and 
recombination, but we can always time-center the u equation to ensure accuracy to 
O(6)2. For simplicity, let us define 

Equation (24) can be rewritten as 

(27) 

We shall now transform (23) and (27) term by term. From (23) we have 

g= ($+I -$)a-‘, (28) 

-- 
tq;A = +[R,A;;; 

-- -- -- -- -- 
+ &A;+’ + TiA;‘;] + +[R,A;+ 1 + S,A; + T,A;p ,I, (29) 

and 
-- -- -- 

@:$= ;[R#,+; +&i;+’ + T&‘;] + $[Ei$;+, + S,Q; + T,#;-,]. (30) 

The term (~,LI,,)“+“~ is calculated explicitly. From (27), we have 

-- 
V:~=s-‘([e,~::+liiA~+‘+X~~~]-[Bi~+l+hA;:+h~-il}, (31) 

d;= (8y,d)-’ 6;[(&+l -Ji-*)n+’ + ($i+l-$i-l)n], (32) 
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and 

(33) 

where i- (-1) “* to avoid confusion with index i. Also 
-- -- -- 

aV:$ = +[R#;,t,’ + .S,!#;+’ +rili;‘:l+~[R(~r+,+s,l~+-tT,‘il~,l. (34) 

In the above, ti is a diagonal matrix with element runs from -N to N, and E:, 9: and 
2 are defined in (17)-(19) with ?ji replaced by ai. Putting (28t(30) in (23) and 
(iI)-(34) in (27), we get the desired bi-tridiagonal form: 

a!“A. I ,-, + cl~*+J-, + b$Ti + bj2’& + c;?T;, , + c;*$+, = df”, 

a!3’,& I ,-, + a;4’qJp, + bj”‘A; + bj4’& + cj”‘&+, + c;“‘&, , = (p, 

where 

a!” - ST; 
I 2 ’ 

($2) - 6Ti 
I 2 ’ 

a;” = jii, 

,i”’ = 601 6Tr , 
8yiA 2 ’ 

b!l)=J “i 
I 2 ’ 

“i b!*) _ I 2 ’ 

bj”’ = pi, 

b(4) _ id $,fi ‘sir 
, 2y4 ’ 2 ’ 

C!“=6R. 
2 1) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(4’) 

(48) 
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(50) 

where f is a unit diagonal matrix. The inversion method of the bi-tridiagonal system 
is given in Appendix A. 

We use conducting boundary conditions at the outer boundary, i.e., 

A,(R) = 0, 

h,(R) = 0, 
(51) 

for all m. Near the origin, we require both the electric and magnetic fields be finite 
and continuous. Noting that for small 7, 

we have at once 

for irnl> 1, (53) 

for m = 0. (54) 

V. APPLICATIONS 

To date, this code has been used only to calculate beam equilibria, using a simple 
envelope model of the beam. The beam current density is specified to be of the form 

where f is a specified radial profile shape (usually Bennett), a([) is the beam radius 
and Y(C) is the transverse displacement of the slice. In most cases, we have specified 
a(C) and used the code, iterating back in 5 from the beam head, to calculate the 
equilibrium value of Y(c). We have already mentioned briefly some applications of 
the code in Section I. We shall elaborate on these areas in some detail here. 

Previous work [6] has shown that in the electrostatic regime at the beam head if 
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the beam radius rb is smaller than the conductivity channel rC, the beam is attracted 
towards the channel axis. On the other hand, if T,, > Y, as is usually true in the beam 
head, we have shown that when the beam residues on the channel axis, each slice will 
see an average force repelling it from the channel. But in the electrostatic regime, if 
the beam is displaced sufficiently from the channel it should see an electric dipole 
attracting it back toward the channel. Using our code to study this problem, we found 
that when the beam displacement is of the order of the beam radius and rb > rc, a 
stable equilibrium exists with the beam off axis, i.e., YZ 0. The equilibrium 
displacement from the channel axis increases from the head of the beam to its tail. A 
detailed description of these results will be presented in a later report. 

When an external electric or magnetic force F acts on the beam, each beam slice 
will be subject to a different acceleration F/my if y is a function of 4’. If the shear in 
F(LJ/my(C) is strong compared to the restoring force due to the beam’s self-pinch, the 
beam will tear. The breakup will continue along 4’ until for some value <, the restoring 
force becomes stronger than the sheared external force; from this point on, i.e., < > CC, 
the beam will hold together. Once the “guiding point” [, is determined, we can find 
(a) the deflection due to the force F, (b) what portion of the beam is torn out and (c) 
the value of y(<,), i.e., the energy of that part of the beam actually guides the rest of 
the beam. If y([,) differs substantially from )J ([= 0), then a problem may occur in 
aiming the beam subject to the influence of this external force. This work is still in 
progress and the results will be reported in a later report. 

APPENDIX A 

The algorithm for inverting a bi-triagonal system with scalar coefficients is well 
known 171. We shall generalize it to include matrix coefficients. The equations are 

a!“U. I ,-, + a;2’v,_, + by ui + b;*‘v, + c;%~+, + cj2)vi+, = dj” 

and 

Uj3’Ui- 1 + uj4bp, + b!3’u. + bj4’vi + c~:~‘u;+, + cj4’vi+ 1 = dj”, I I 

for 1 < i ,< R, with a?“’ = ci”’ = 0 I f or 1 ,< m < 4. The algorithm is as follows: First 
compute 

5x1155/2 12 
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Using 

we get 

pi = yjl’ - q$+ 1 - #q*‘q+,) 

vi = yy - q3’ui+, - /q4’Vi+, ) 

for (R-l)>i>l. 

APPENDIX B 

For the sake of accuracy, we want to include as many modes as possible, but the 
running time goes up as the cube of the number of modes, i.e., if we double the 
number of modes, it will take eight times longer to run. To monitor the accuracy, one 
should make sure that the absolute values of the transforms decrease monotonically 
from the lowest mode to the highest mode. Moreover, the absolute value of the lowest 
mode should be at least two orders of magnitude larger than the highest mode. 
Depending on the symmetry of the problem being studied, it usually takes eight 
modes to study a beam displacement of Y/u - 1. As far as the field solver is 
concerned, because it is solved implicitly, one can use relatively large time steps (A<). 
But the conductivity equation is nonlinear and is solved explicitly, and one can 
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usually avoid difficulties by choosing d</a - 0.5. The y step size is usually 0.02 beam 
radius. 

The source term in J,, can be externally imposed, i.e., assigning a specific Jh(i), for 
example, for a Bennett beam one could use 

Jdi)=~ (1 + l*, *)*, r a 

where Ib([) is the beam current with some kind of a rise time. Alternatively, if this 
code is joined with a particle pusher, then Jb is obtained by summing up the beam 
charges. Jr,,,, is obtained by transforming J,. A typical run using four modes (WI = S), 
200y-grids and 60 [ steps takes about 40 minutes of VAX 1 l/780 CPU time. 
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